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1. INTRODUCTION 

Convexity assumptions have played a dominant role in the development of 
the static Walrasian equilibrium theory with a finite number of agents and of 
the normative theories of productive efficiency and Pareto optimality. 

In the literature on extending the static theory to an intertemporal 
framework, convex structures imposed on the technology and preferences are 
very often exploited to the fullest possible extent. In attempts to characterize 
efficient or optimal allocations in terms of the “dual” or “competitive 
conditions” of utility and profit maximization the relevant “prices” emerge 
out of an application of separation theorems on convex sets in finite or 
infinite dimensional linear spaces. 

The duality theory has played an essential role in several contexts, and we 
mention a few of the important ones: 

(4 in proving the existence of optimal programs, when future utilities 
are not discounted; [Gale (1967) developed his own version of the 
Kuhn-Tucker theorem applicable to maximization of a concave function 
over a convex set.] 
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(b) in establishing “turnpike” or asymptotic behavior of optimal 
programs when the criterion of optimality is either a welfare function on 
terminal stocks [as in Radner (1961)] or the sum of additively separable 
utility functions defined on consumptions in each period [as in McKenzie 
(19Wl; 

(c) in a rigorous development of the concept of present-value 
maximization as an investment criterion and the notion of interest rates 
arising out of present value prices [Koopmans (1958); Malinvaud (1953), 
Radner (1967)]; 

(d) in the theory of decentralization of decision making in an infor- 
mationally efficient manner [Hurwicz (1973)]. 

Quite apart from the development of the duality theory, it should be noted 
that the “standard” arguments on uniqueness and sensitivity of optimal 
programs rest directly on convexity of the technology. Thus, it is fair to 
single out convexity as perhaps the most crucial building block of the 
conventional models of intertemporal allocation. Hence, a major criticism of 
these models arises out of the inability to deal with indivisibilities or 
increasing resurns. To take just one example, John Hicks (1960) in his 
review of the progress of capital theory remarked, “I find it hard to believe 
that increasing returns and growth by capital accumulation are not tied very 
closely together. I could quote authority (Adam Smith or Allyn Young) for 
this belief.” 

While the recognition of the relevance of increasing returns is prevalent in 
the literature, rigorous analysis of models with non-convexities has so far 
been limited to a few notable efforts, mostly in the static context. [See, for 
example, Starr (1969), Arrow and Hurwicz (1977), Heal (1971), Brown and 
Heal (1979), Calsamiglia (1977), Guesnerie (1974).] It should be noted that 
a remarkable theorem due to Liapunov enables one to make progress in 
models with a continuum of agents without any convexity assumptions on 
individuals (see, for example, Hildenbrand (1974)]. 

In this paper, we consider the standard one good model, and in contrast 
with the literature growing out of Ramsey (1928), our gross output function 
exhibits an initial phase of increasing returns, with decreasing returns setting 
in eventually [see Fig. 1 in Section 21. We reexamine some of the “classical” 
questions of intertemporal allocation theory, and attempt to derive definitive 
results using the special, recursive structure of the model. 

First, we take up the question of characterizing resource allocation 
programs that are intertemporally efficient. We discover a basic qualitative 
difference between the “classical” model (see Section 2 for a clarification of 
this nomenclature) studied by Cass (1972) and others, and the “non- 
classical” model, that we study. It turns out that the average productivity, 
along a feasible program, has a crucial role in indicating intertemporal inef- 
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ficiency in the “non-classical” model. Contrast this with the “classical” 
model in which the relevant signal can be precisely expressed solely in terms 
of marginal productivities. 

Next, we consider the questions of existence and turnpike properties of 
programs that are optimal (according to a version of the overtaking 
criterion) when future utilities are not discounted. [The utility function is 
assumed to be concave.] It is perhaps a bit surprising that the special 
structure of the technology can be exploited and a fairly complete theory can 
be developed in this case, with suitable adaptations of a number of standard 
arguments. First, we show that there is a unique stationary program which 
maximizes utility per period among all stationary programs. This program 
can be supported by a stationary competitive price system. A “value loss” 
property relative to this stationary program, at this price-system can be 
derived; and that property is then used to show that this stationary program 
is optimal among all programs (stationary or not) from the same initial 
stock. [That is, this program is an optimal stationary program.] Finally, it is 
shown that an optimal program exists from every positive initial stock, and 
does indeed converge to the optimal stationary program. 

When future utilities are discounted, the difference between the classical 
and non-classical models turns out to be quite remarkable. The qualitative 
properties of optimal programs depend crucially on the magnitude of the 
discount factor. Roughly speaking, when discounting is “mild,” optimal 
programs behave as in the undiscounted case (converging to a unique 
optimal stationary program). When discounting is “heavy,” optimal 
programs converge toward zero in the input, output and consumption levels. 
In the intermediate cases, optimal programs may exhibit a wide variety of 
behavior: in particular, in the interesting cases where there are two Euler 
stationary programs [see Section 2 for a definition of this concept], they may 
converge to the higher Euler stationary program, converge towards zero, or 
oscillate around the lower Euler stationary program. 

We also note that the behavior of an optimal program [even in the 
longrun] is no longer independent of initial stocks. That is, optimal programs 
from different initial stocks can exhibit different asymptotic properties. 
Contrast this with the literature on ‘turnpike” theory in the classical model, 
which establishes precisely that long-run optimal behavior is invariant with 
respect to initial conditions. 

We have found very few results in the literature which overlap with ours. 
However, there are some papers which deal with problems and models 
similar to ours, and we mention a few of the important ones. Clark (1971) 
has examined the problem of a revenue maximizing fishery, when the 
“reproduction function” is a convex function for low input levels, and a 
concave function for high input levels. This is mathematically equivalent to 
the problem we study in Section 5, but with a linear utility function. Because 



104 MAJUMDAR AND MITRA 

of this added structure, Clark is able to rule out some types of behavior of 
optimal programs which we encounter for the non-linear utility function. A 
brief discussion of the discounted optimal growth problem with a linear 
utility function is given in Section 6. Lewis and Schmalense (1977) treat the 
case of a concave “reproduction function,” but allow the utility function (in 
their discounted optimality exercise) to be non-concave; also, their treatment 
of the problem is in continuous time, in contrast to our discrete time 
methods. 

Lane (1977) encounters a non-concave gross-output function in his 
continuous time treatment of a discounted optimal growth problem with 
endogenous population. In view of the fact that the consequent non-convexity 
in the technology set has less structure than ours, the results on the behavior 
of optimal programs are somewhat less sharp than ours. Finally, Skiba 
(1978) considers the problem of discounted optimality in continuous time in 
the framework of our model. Some of the observations of Skiba are 
rigorously established in our analysis. [His dynamic analysis often rests on a 
linear approximation technique, which is not quite an appropriate method for 
global analysis.] Furthermore, the effect of the discount rate and the initial 
stock on long-run optimal behavior is more systematically treated in this 
paper. 

2. THE MODEL 

2a. Production 

We consider an aggregative model, with a technology given by a function 
f from R+ to itself. The production possibilities consist of inputs, x, and 
outputs y = f(x) for x > 0. The following assumptions on f are maintained 
throughout the paper. 

(A. 1) f(0) = 0. 

(A.2) f(x) is strictly increasing for x > 0. 
(A.3) f(x) is twice continuously differentiable for x > 0. 

(A.4) f satisfies the following end-point conditions: 

f’(m) < 1 < f’(0) < co 

(AS) There is a real number k, such that 

(i) O<k,<co; 
(ii) f”(x) = 0 for x=k,; 

(iii) f”(x) > 0 for O<x < k,; 

(iv) f”(x) < 0 for x>k,. 
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In contrast to the present model, the traditional aggregative framework 
would replace (AS) by 

(AS’) f is strictly concave for x > 0 (f”(x) < 0 for x > 0) while 
preserving (A.l)-(A.4). [In some versions, (A.3) and (A.4) would also be 
modified to allow f’(0) = co.] In discussions to follow, we will find it 
convenient to refer to a model with assumptions (A.l)-(A.4) and (A.5’) as 
“classical”, and to a model with (A.l)-(A.5) as “non-classical.” 

We define a function, h [representing the average product function], as 
follows: 

0) = VWxl for x > 0; 44 = ty vw/x1. (2.1) 

Under (A.l)-(A.5), it is easily checked that h(O) = f’(0). 
Under (A.l)-(A.5), there exist uniquely determined real numbers k*, I?, k, 

satisfying 

(i) O<k,-ck,<k*<E<m; 

(ii) f’(k*) = 1; 

(iii) f(E) = k; 

(iv) f’W = %%). 

Furthermore, for 0 <x < k*, f’(x) > 1; and for x > k*, f’(x) ( 1; for 
0 < x < E, x < f(x) < E, and for x > k, i ( f(x) ( x; for 0 ( x < k,, 
f’(x) > h(x), and for x > k,, f’(x) < h(x). Also note that for 0 < x < k,, 
h(x) is increasing, and for x > k,, h(x) is decreasing; for 0 < x ( k, , f’(x) is 
increasing, and for x > k,, f’(x) is decreasing. 

The functions, f, f ‘, and h, together with the numbers k, , k,, k* and & 
may be represented diagrammatically as follows, in Figs. la and b. 

f(X), f’(x), h(x), 

k, k, k’ ii x k, k,k* k x 
(0) cb, 

Productvan Function Marginal 8 Average 
Product Functions 

FIGURE 1 
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2b. Programs 

A feasible production program from x > 0 is a sequence (x, y) = (x,, y, + , ) 
satisfying 

x0 = x; o<x,< Yt and Y,=f(x,-1) for t > 1. (2.2) 

The consumption program (c) = (c,) generated by (x, y) is given by 

c, = Y, -x, for t> 1. (2.3) 

We will refer to (x, y, c) as a feasible program from x, it being understood 
that (x, y) is a feasible production program, and (c) the corresponding 
consumption program. 

A feasible program (x, y, c) from x is called positive if 
(x,9 Y I+ 1, c,, 1) >> 0 for t > 0. It is called interior if inf,>, xI > 0. 

It is a standard exercise to check that for any feasible program (x, y, c) 
from x, we have (xI, y t+, , c,, 1) < (l, & l) for t > 0, where f = max(x, l). 

A feasible program (x’, y’, c’) from x dominates a feasible program 
(x, y, c) from x, if ci > c, for all t 2 1, and c; > c, for some t. A feasible 
program (x, y, c) from x, is said to be ineflcient if some feasible program 
from x dominates it. It is said to be eflcient if it is not inefftcient. 

2c. Preferences 

The planner is endowed with a utility function, u, from R+ to R, and a 
discount factor, 6, where 0 < 6 < 1, which reflects the planner’s time 
preference. A feasible program (x*, y*, c*) from x is called optimal if 

liq s,up E 8-l [u(c,) - u(c:)] < 0 (2.4) -+ I=1 

for every feasible program (x, y, c) from x. 
A feasible program (x*, y*, c*) from x is intertemporaiprofit maximizing 

(IPM) if there is a non-null sequence (p*) = (p,*) of non-negative prices, 
such that, for t > 0. 

* Pt+ 1 Y;“, 1 - P:xP 2 P& 1 Y - p:x for x > 0, y = f(x). (2.5) 

A price sequence (p*) = (p:) associated with an IPM program, for which 
(2.5) holds, is called a sequence of IPM prices. A feasible program 
(x*, y*, c*) from x is competitive if there is a sequence (p*) = (p:) of 
non-negative prices such that (2.5) holds for t > 0; and, for t > 1. 

6’-‘u(c:) - pi%: > 6’-‘u(c) - ppc, c > 0. (2.6) 

A price sequence (p*) = (pp) associated with a competitive program 
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(x*, y*, c*), for which (2.5), (2.6) hold, is called a sequence of competitive 
prices; (2.5), (2.6) are called the competitive conditions. 

The following assumptions on u will be maintained throughout the paper: 

(A.6) u(c) is strictly increasing for c > 0. 

(A.7) u(c) is continuous for c > 0, and continuously differentiable for 
c > 0. 

(A.8) u(c) is strictly concave for c > 0, with U”(C) < 0 for c > 0. 

(A.9) u’(c) -+ co as c -+ 0. 

A positive program (x*, y*, c*) from x is called an Euler program if 

u’(c~) = &-‘(x:) u’(c,*, ,) for t> 1. (2.7) 

A feasible program (x*, y*, c*) from x is stationary if xl* = x;“+, for t > 0. 
An Euler stationary program (ESP) from x is a stationary program, which is 
also an Euler program. An optimal stationary program (OSP) from x is a 
stationary program, which is also an optimal program. 

3. CHARACTERIZATION OF INEFFICIENCY 

This section is devoted to finding suitable conditions, which can charac- 
terize the set of inefficient (alternatively, efficient) programs. 

To provide such conditions, we have found it useful to look at the function 
g(x) defined by 

g(x) = min[h(x), f’(x)] for x > 0. (3.1) 

We associate, with any feasible program (x, y, c) from x > 0, a sequence 
(cd given by 

qo= 1, 4r+1 = 4dg(x,) for t > 0. (3.2) 

and a sequence (rl) given by 

ro= 1, r t+ I = h/f’641 for t > 0. (3.3) 

We establish that if a feasible program (x, y, c) is inefficient then ((l/q,)) 
is summable [Theorem 3.11. This result should be contrasted with the 
criterion of Cass (1972), established in a “classical” model, which says that 
if an interior program (x, y, c) is inefficient, then ((l/r,)) is summable. That 
the Cass criterion does not hold in the “non-classical” model, is 
demonstrated in Example 3.1. 

We then show that if an interior program (x, y, c) satisfies the condition 
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that ((l/r,)) is summable, then it is inefficient. It is not possible to show that 
“if ((l/q,)) is summable, then (x, y, c) is inefficient.” This is demonstrated in 
Example 3.2. 

We also note, with an example, that efficient programs are not necessarily 
intertemporal profit maximizing, so that the well-known Malinvaud theory of 
the “classical” model breaks down [see Example 3.31. Furthermore, it is not 
known in this “non-classical” framework, whether efficiency implies some 
concept of “value-maximization” relative to an appropriate “price system.” 

Before coming to the proofs of the theorems, we introduce some notation. 
Define k, = (k, + kJ2; k, = (k, + k*)/2. The function [-f”(x)] is 
continuous and positive on the compact set [k,, k]. Hence, there is D > Q, 
such that [-f”(x)] > D for all x in [k,, 61. Similarly, f’(x) is continuous 
and positive on the set [0, E]. Hence there is 0 < B < co, such that f’(x) < B 
for all x in [0, /?I. Define 

then E > 0. 

Also, denote min [f ‘@,I, h(O)] by b; then b > 1. Define 
a=(2b- l)/(b- 1). 

THEOREM 3.1. If a feasible program (x. y, c) from x E (0, l) is 
ineflcient, then 

f U/q,) < aI* (3.4) 
I=0 

Proof. If (x, y, c) is inefficient, then by the argument in Cass (1972, 
pp. 203-204) there is a sequence (E,) and an integer 1 ,< s < co, such that 

E It 1 = f(4 - f(x, - Et) for t > s, (3.5) 

O<Et<Xt<k for t > s. (3.6) 

For t > s, define x; = X~ - E,. Then 0 < x; < x,, and E,, i = f(x,) - f(x;) for 
t > s. 

For each t > s, we distinguish between two cases: 

Case I. x; < k,. 

Case II. x; > k, . 

We consider Case I first, and subdivide it into three subcases. 

Case I(a). x, > k,. 

Case I(b). k, < x, < k,. 

Case I(c). x, < k, . 
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In case I(a), using (3.5) we get s,, , = f(x,) - f(x;) = f(x,) - f(k,) + 

f(h) -f(4). Now, f(x,) - f(kJ = f’(Xf>(Xf - 4) + 
(1/2)[-f”(&)l(x, - kd* [ w h ere k, < k, < &<x, < k] > f’(xI)(xf - k,) + 
(1/2)D(x, - k,)’ > f’(x,)(x, - k,) + W>W, - 4’ > f’Mx, - k,) + 
;(D(k4 - k,)*/l*). E; > f’(x,)(x, - k2) + [D(k, - k2)*/2Bk2] f’(x,) E; = 
f’Mx, - k,) + Ef’h) E:- Also, we note that f(k,) - f(x;) = h(k,) k, - 

43x: > Wdk, - Wdx; [ since h(x) is non-decreasing for 0 < x < k,] = 
h(k2)(k2 -xi> = S’(k,)(k, -x;) > f’(x,)(k, -xi). Hence, q, l 2 
f’(x,)(x, - k,) + W-‘(xtb: + f’(x,M, - 4) = f’(x,)(x, -4) + JV-‘WE: 
= f/(x,) E, [ 1 + Eq] = g(x,) 6, [ 1 + EE,]. 

In case I(b), using (3.5) we get E,, i = f(x,) -f(xi) =f(x,) -f(k,) + 
f(k,) - f(x;) > f’(xl)(xt - k2) + f(k,) - f(x;). Using the arguments in 

case I(a), f(k2) - f(xl> > f’(xf>(k2 -4). So E,+, > f’Mx, - k2) + 
f’(xf)(k2 - $1 = f’(x,>q = go,, and &,> > f’(kJ > b. 

In case I(c), using (3.5), we get s,+i = f(x,) - f(x;) = /2(x,)x, - 
W)xl > ~(x,)(x, -xi) [h is non-decreasing for 0 < x < k2] = g(x,)(x, - xi) 
= g(.qh, and g(q) > 40) > b. 

Now, we consider Case II. Here, by (3.6), x, > xi 2 k,. Hence, using 

(3*5), &f, I = f(x,> - f(x;> = f’(x,)(x, -x:> + f [-f”(&)](x, - xi)’ [where 
k, < r; < cl > f’C+, + (W)~: > f’@,k, t WWf’(x,)~: > 
f’(& + Ef’(x06 = f’(x&t [l + &I > &Jq I1 t &I. 

Thus in all cases we have either 

&,+I > &&,[l tkl (3.7) 

or 

&,,I a &J&f and g(q) > b > 1. (3.8) 

Let S be the set of time periods t > s for which (3.7) holds; and, let S’ be the 
set of time periods t > s, for which (3.7) does not hold. 

First, S is an infinite set. For if S were finite, then there is T < co, such 
that for t > T, t is in S’. This means that for t > T, (3.8) holds. But then 
sI + co as t + co, contradicting (3.6). 

Now, there are two possibilities to consider: (i) S’ is a finite set; (ii) S’ is 
an infinite set. If (i) holds, there is T’ < co, such that for t > T’, t is not in 
S’; that is, t is in S. This means that for t > T’, (3.7) holds. Then, by the 
argument of Cass (1972, p. 219), (3.4) holds. 

In case (ii), S’ is an infinite set, and, as we have already established, S is 
an infinite set. Now, define pr = E when t E S; p1 = 0 when t E S’. Then, by 
(3.7), (3.8), we have for t > s, 

E 1+1 a %&Xl -+PAl (3.9) 
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This means q t+1~,+1~%~t[1+wtl or 

1 1 1 
< =-- 

41+1%+1 qrq [l +P&tl qf&t [a( 1 Evt)I 

or 

Pt &- 1 

91(1 +A+$ qrq %+1&,+1’ 

so 

1 1 
<- 

qT+l’T+l qscs 

for T > s. Hence, we have C,“=, ,udq,( 1 + p, EJ < co. Using the definition of 
,ur, we obtain 

A = 2 (l/q,) < co. 
IES 

(3.10) 

Let t, (n = 1,2,...,) be the time periods which belong to S. For each n, we 
have either (i) tn+ 1 > t, + 1, or (ii) t,, 1 = t,, + 1. In case (i), the time 
periods, t, such that t, < t < t, + , , belong to S’. For these t, 

so 

qt”+, < dblfn+l-fl (from (3.8)). 

c (l/q,) < U/qtn+,> 2 U/b’) G Mb - 111 [l/qtn+,l- t.<f<t”+l i=l 

Hence, 

In case (ii), 

X (l/q,) = Wtn+,) G Wtn+,). 
t.<t<t,+t 

Thus in either case, 

(3.11) 
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Now pick any integer N > 1. Then 

*Iv+1 
s (l/q,Ka 5 Wq,,,+,KaA. 

t=t,+1 n=l 

Hence, we have ,YJ,“=,,+r (l/q,) < aA. This means that (3.4) is satisfied. 1 

THEOREM 3.2. An interior program (x, y, c) from x E (0, 1) is inefficient 

if 

g (I/r,) < 03 
t=o 

(3.12) 

ProoJ Follow exactly the method of Cass (1972, pp. 218-220), noting 
that concavity off is nowhere required. I 

Remarks. (1) Suppose a feasible program (x, y, c) from x satisfies 

lim infx, > k*, 
t-too 

then it is inefftcient by Theorem 3.2. 

(2) If x > I;, then for a feasible program (x, y, c) from x, either (a) xt ( k 
after a finite number of periods; or (b) xt > f for all t > 0. Clearly, in case 
(b), (x, y, c) is inefficient. Thus, there is no loss of generality in restricting x 
to be in (0, I;>, as we have done in Theorems 3.1 and 3.2. We will continue 
this restriction in the subsequent sections. 

(3) Cass (1972) establishes that, in a “classical” model, if an interior 
program (x. y, c) from x E (0, r;> is inefficient, then 

2 (l/r,) < CO. t=o 
(3.13) 

Note that the method of proof used in Theorem 3.1, can be used in the 
“classical” model to show that if a feasible program (x, y, c) from x E (0, E) 
is inefficient, then (3.13) holds. Thus the method of proof used in 
Theorem 3.1 is a refinement of the proof used in Cass (1972). 

Given Theorems 3.1 and 3.2, a natural question is whether we can 
strengthen either of the Theorems to obtain a complete characterization of 
inefftciency. The answer is in the negative, as the following two examples 
demonstrate. The first example constructs an interior program (x, y, c) from 
x E (0, E)>, which is inefficient, and violates (3.12). Hence the converse of 
Theorem 3.2 is not true. The second example constructs an interior program 
(x, y, c) from ‘x E (0, k), which satisfies (3.4) and is efficient. Hence, the 
converse of Theorem 3.1 is not true. 

642/27/1-S 
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EXAMPLE 3.1. Define H(x) = 2x +x2 - ix’ for 0 <x < 5. Then 
H’(x) = 2 + 2x - ;x2, H”(X) = 2 - x. H’(2 + &) = 2 + 2(2 + 6) - 
f(2 + J/6)” = 2+4+2,/&f[4+4&+6] = 2+4+2&- 
2 - 2@-- 3 = 1. Also, H”(x) > 0 for x < 2; H”(2) = 0; H”(x) < 0 for 
x > 2. 

Clearly H(0) = 0, H(2) > 6. There exists 0 < m < 1 such that 
H(2 - m) > 6; then, H”(x) = 2 -x > m, for x < 2 - m, H’(2 - m) > 
H’(0) = 2, H/(2-m) <H’(2)=4. Note that H”(x) < 0 for 4 <x< 5; 
H’(4) = 2, H’(4:) = & < $. Also H’ is continuous for 4 <x < 4:. Hence, 
there is 2 + fi ( Z, ( 4: such that H’(Z,) = [l/H/(2 - m)]. Denote Z, - 1 
by Z,; Z, + 1 by Z,. Choose 0 <p < 1, such that 2(1 -,8)Z, <m/16, and 
H’(2 - m) 2(leD) < H’[2 - (m/2)]. Choose a = [H’(Z,)//?]. 

Define G(x) = H(Z,) + a(x - Z2)4 - a for x > Z,. Then G(Z,) = H(Z,); 
G’(x) = a/3(x - Z,)‘-‘; G’(Z,) = a/l = H’(Z,). G “(x) = 
a/?(,/3 - 1)(x - Z2)B-2 < 0; for z,,<x<z,, [-G”(x)]x/G’(x) = 
(l-@)X/(X-Zz) = (1 -/?)x < (1 -j?)Z,. Now G’(Z,) = a/1/2’1-4’ = 
l/H’(2 - m) 2”-4’ > { l/H’[2 - (m/2)]}. Also, G’(Z,) = a/3/2’re4’ < a/l = 
[ l/H’(2 - m)]. H ence, there is riz, such that (m/2) < rii < m, for which 
G’(Z,) = [ l/H’(2 - ti)]. Denote (2 - rfi) by Z,. 

Define f(x) = H(x) for 0 <x < Z, ; f(x) = G(x) for Z, < x. Define a 
sequence (x, y, c) from x = Z, by xt = Z, for t E T = {0,2,4 ,..., }, x, = Z, 
for tET’={1,3,5 ,..., ). Then, for tET, f(x,)-x,,, = f(Z,)-Z,> 
f(Z,)-Z,>f(2)-Z, > 6-(2-rit)>O. For tET’, /(x,)-x,+, = 

S(Zd - z, > f(2-m)-Z, > 6-Z, = 6-(Z,+l) = 
5 - Z, > 5 - 4: > 0. Hence (x, y, c) is a feasible program from x = Z,. 

For t E T, t > 2, nf;,f’(x,) = [f’(Z,)f’(2 - fi)]“‘2’ = 1. Hence, 
Cy=,(l/r,) + co as N+ a~. So (3.13) is violated. We will show, now, that 
(x, y, c) is inefficient. 

Choose d = min(l/& f). Define d, = d, d, = d,f’(Z,) [ 1 + &d/64], and 
d, = d, f’(Z,)[ 1 - &d/64]. Then, clearly dof’(Z,) < d, < do; 
d, = d,f’(Z,)f’(Z,)[ 1 - (fid/64)*] < d,. 

Define E,, = d, ; et= d, for t E T’, and E, = d, for t E T. Clearly then 
0 < E, < xI for t > 0. We will show that E(+ r > f(x,) - f(x, - Ed) for t > 0. 
This is clearly true for t = 0. To see this, write f(x,) - f(x, -E,,) = 
f’(Zd~, + f [-f”(<,)] 6f1 (where x0 - &o < Co < x0> = 
f’G)Eo[l + t~~-f”~~o~l~3~o/f’~~3~~3~1. Now, l-f “(CO)1 
a/?(1 -p)/(<o-Z2)2-0 < a&l -/3)/(Z, -Z2)2-4 = a/?(1 -p)2’2-b’/2”-z 
< a/3( 1 - p) 22-“/(Z, - Z2)2-D [-f”(Z,)] 22-4. 
4 [-f”(ro)] Z,/f’(Z,) Q +z, [-f”(Z,)] F”,f’(Z,) < +( 1 - P)Z, 2pT 
2(1 - P)Z, < m/16 Q [rit/8]. Also [so/Z31 < (s0/4). So f(x,) - f(x, - Q,) < 
f’(Z3)~o [ 1 + &,/64] = dof’(Z3)[ 1 + fid/64] = d, = E, . 

Suppose, now, that E t+, 2 f(x,) - f(x, - cl) is true for t = 0, l,..., N. We 
will show that it is true for t = N + 1. There are two cases to consider: (i) 
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NE T, (ii) NE T’. In case (i), Y(x,+~) - f(x,+, - sN+ i) = f(Z,) - 

f (Z, - d,) f’(ZJd, ++I-f”Kv+Jld: = 
[l -~f”(~~+l)Z~dl/f ‘(Z,)Z,] (where Z, -d, < &,+, < Zs:%: 
f “(6, i) = 2 - &+, > iii [since &,+i < 2 - fi], and f ‘(Z,) < 4. So, 
f “(&+ ,)Z,/f ‘(Z,) > fi(2 - A)/4 > &t/4. Also, d,/Z, > d,f ‘(Z&2 > do/8 
= d/8. Hence, f (Z,) - f (Z, - 6,) < f ‘(Z,) d, [ 1 - &a/64] = d, = cNiZ. 

In case (ii>, f(x,+l)-f(xN+I-&N+l) = f(Z,)-f(Z,-d,) < 
d, f ‘(Z,)[ 1 + Gd,/64] [by using the same calculations as those used for 
t=O] <d,f’(Z,)[l +Ad,/64] { since d, < do} = d, f ‘(Z,)[ 1 + fid/64] = 
4 = ‘N+2* This completes the induction argument. Hence E,, , > f (x,) - 
fk - E,) for t>O and O<st<xI for t > 0. So, by Cass 
(1972, pp. 203-204), (x, y, c) is inefficient. 

EXAMPLE 3.2. Consider any f satisfying (A. l)-(AS). Let 
x = (k, + k,)/2. Let x’ = $k, + ik,. Then k, < x’ < x < k,. Also f (x) - x > 
f (x’) - x’. Hence there is 0 < E <f(x) - x, such that f(x) -x - E > 
f (x’) - x’. 

Defineasequence(x^,)by~,=x,x^,+,=~,+&for~~~k*;~2,+,=~~for 
JI > k*. Then (a,) is a feasible program, and there is some period for which 
it > k*. Let N be the first period for which ir > k*. Let a = JJy:d f/(x,). 
Then a > 1. 

Choose k* < m < zN, such that af’(m) > 1, and f(m) - m > f(x) -x 
[Clearly, such a choice of m is possible, and f ‘(m) < 11. Denote f ‘(m) by /I. 
Then c$ > 1. Let M be the smallest integer such that /Pa < 1. Clearly M> 2 
and linite. Then 8”-’ a > 1. So, there is 1 > JJ>~ such that )$“-‘a = 1. 
Clearly, there is k* ( r?i < m such that f ‘(ti) = y. 

Define a sequence (x, y, c) as follows: 

x, = it for t=O,...,N- 1, 

xt = m for t=N,...,N+M-2, 

x, = Fii for t=N+M- 1, 

Xf = xt-(N+M) for t>N+M. 

It can be checked that (x, y, c) is a feasible program from x [it is also 
interior] with c, > f(x) - x - E > f (x’) -x’ > 0 for t 2 1. 

Denot;= [Il/qNi+yli ; e, and C~‘tl“‘(l/ql) by e’. By construction 

[ 1/rN+M ,ane . 
Given any positive integer, n, C:Iv,+M’(l/r,) > n, so CTEO(l/rf) + co as 

T-, co. Also, given any positive integer, n, 



I14 MAJUMDAR AND MITRA 

n(N+M) 

s (l/q,) = e’ + ee’ + ..a + en-‘e’ 
I=1 

=e’(l -e”)/(l -e)<e’/(l -e). 

Hence, C,“o=o(l/q,) < CO. 
We claim that (x, y, c) is an efficient program. Otherwise there is a 

feasible program (x”, y”, c”) from x which dominates (x, y, c). By the 
procedure used in Cass (1972, pp. 203-204), there is S, and a sequence (sI) 
such that 0 < E, = (xl -x;‘), and E t+ 1 > Ax,) - f(x, - E,) for t > S. Now, 
since c, > f(x’) -x’ for all t, c:’ > f(x’) -x’ for all t, and f(x) -x < 
f(x’) - x’ for x < x’, so x;’ > x’ for t > 0 [otherwise, x;’ would become 
negative for large t, a contradiction]. Hence, both x;, x; > x’ for t > 0; 
similarly both x;‘, x, < E for t > 0. 

Note that f”(x) < 0 for x E (k,, l]. Since x’ > k,, so there is D’ > 0, 
such that [-f”(x)] > D’ for x E [x’, k]. Now follow exactly the method of 
Cass (1972, pp. 218-219) to get 2:,(1/r,) < co. However, we have shown 
that JJTZO( l/r,) + co as T -+ co. This contradiction establishes our claim that 
(x, y, c) is efficient. 

EXAMPLE 3.3. This example shows that an efficient program need not be 
intertemporal profit maximizing. Let x = k,, and consider the sequence 
(x, y, c) given by x1 = x for t > 0. Clearly, (x, y, c) is a feasible program 
from x, and by Theorem 3.1 it is efficient. We claim it is not IPM. If it were, 
then there is a non-null sequence (pl) of non-negative prices, such that (2.5) 
holds. Let n be the first period for which p, > 0. Since x, > 0, so p,,+ , > 0 
[using x = 0, y = f(0) = 0 in (2.5)]. Then (2.5) implies, Pn+ ,f’(k,) = pn, 
and p,,+, [f(k,) - f’(k,) k,] > 0, so f(k,)/k, > f’(k,), a contradiction. 

4. OPTIMAL GROWTH WHEN FUTURE UTILITIES ARE UNDISCOUNTED 

In this section, we study the questions of existence and turnpike properties 
of optimal programs, when future utilities are undiscounted. 

Many of the results of the “classical” model continue to hold: (a) There is 
a unique Euler stationary program, and this is also the (unique) optimal 
stationary program; this program is competitive at a stationary price 
sequence; (b) optimal programs exist from every positive initial input level; 
they converge monotonically to the optimal stationary program. 

Some results of the ‘classical” model fail to hold: (a’) In general, it is not 
known whether an optimal program from every initial stock is unique; (b’) 
Optimal programs are not necessarily competitive, and an example is given 
to confirm this fact. 
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In this section, and the next, for expositional convenience, we will discuss 
the existence and qualitative properties of Euler and Optimal Stationary 
Programs in a first subsection; non-stationary optimal programs will be 
examined in a second sub-section. 

4a. Stationary Programs 

Consider the set 5?? = (c : c = f(x) - x, 0 < x < f}. Clearly 59 is compact. 
Hence, there is c* in 57, such that c < c* for all c in 5?. Since 0 < x < f 
implies f(x) -x > 0, so c* > 0. Associated with c* is x* such that 
0 < x* < &, and f(x*) -x* = c*. Since x* maximizes [f(x) -xl over the 
set {x : 0 < x < k}, and the maximum is attained at an interior point, 

f/(x*) = 1. 

Since k* is the unique non-negative solution to f’(x) = 1, so x* = k*, and 
k* is the unique input level, which maximizes c over the set @. 

Consider the program from k* given by x;” = k*, y,*, 1 = f(k*), cl*+ 1 = 
f(k*) - k*, for t > 0. Then (k*, f(k*), f(k*) - k*) is a feasible program 
from k*. Clearly, it is stationary, and positive. Since f’(k*) = 1, so it is an 
Euler Stationary Program. Since k* is the unique non-negative solution to 
f’(x) = 1, so it is also the only Euler Stationary Program. 

We show, next, that (k*,f(k*),f(k*) - k*) is an Optimal Stationary 
program from k*. For this, we need two preliminary results. For the rest of 
this section we denote f(k*) -k* by c*. 

LEMMA 4.1. There is p* > 0, such that 

u(c*) - p*c* > u(c) - p*c for c > 0; (4.1) 
p*f(k*) - p*k* > p*f(x) - p*x for x > 0. (4.2) 

Proof. Denote a’(~*) by p*; then p* > 0. By concavity of U, we have for 
c > 0, u(c) - u(c*) < u’(c*)(c - c*) = p*(c - c*). By transposing terms, 
(4.1) is verified. 

By definition of k*, f (k*) - k* > f (x) -x for 0 <x < I;. For x > k; 
f (k*) - k* > 0 > f(x) -x. So for all x20, f(k*) - k* 2 f(x) -xx. 
Multiplying this inequality by p* > 0, yields (4.2). 

LEMMA 4.2. Given any 0 > 0, there is q > 0, such that for x > 0, 
(k*-x)>8implies [p*f(k*)-p*k*]-[p*f(x)-p*x]>v. 

ProoJ: Suppose, on the contrary, there is a sequence (xn) such that 
x, > 0, (k* - x,J > 0, for n = 1,2,3,..., but [p*f (k*) - p*k*] - 
[P*fcd - P”X,l + 0 as n-+ co. Clearly x, is in [0, k*] for each n, so 
consider a subsequence of (x,) converging to 2. Then 2 is in [0, k*], and by 
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continuity of f, [p*f(k*)--*k*] = [p*f(i)-p*i]. Hence f(i)-a= 
f(k*) - k*. Since (k* -x”) 2 8 for each n, so (k* - 2) > 0, and 2 < k*. So 
f(k*) - f(a) = f’(z)(k* -2) where ,i? < z < k*. Then f’(z) > 1, so 
f(k*) -f(i) > k* - 2, a contradiction. This establishes the result. 

THEOREM 4.1. The feasible program (k*, f (k*), c*) is an optimal 
program from k*. 

Proof. Suppose on the contrary that there is a feasible program (x, y, c) 
from k*, a scaler a > 0, and a sequence of periods T, (n = 1,2,3,...), such 
that 

z [u(cJ - u(c*)] > a 
I=1 

for all n. (4.3) 

Using Lemma 4.1, we have for t> 1, u(c,)-u(c*)<p*(c,- c*)= 

P*[f(x,-,)-x,1-P*[f(k*)-k*l = [r,*f(x,-1) - P*x,-,I + 
k2xid - p*x,] - p*[f(k*)- k*] < [p*x,-, - P*x,]. Hence, for T> 1, 

5 Iat> - e*)l < L [p*x,-, - p*x,] = p*k* - p*x,. (7, (4.4) 
t=1 

Hence for all 12, we have, using (4.3), (4.4), 

p*(k* - xr,) > a. (4.5) 

This means that (k* -x,=) > (a/p*) for all n, so by Lemma 4.2, there is 
E > 0, such that 

[p*f(k*) - p*k*l 2 [p*f(x,n) - P*x,J + E for all n. (4.6) 

Using Lemma 4.1 again, and (4.6), we have for t = T, + 1, u(c,) - u(c*) < 
p*(c, - c”) = p*V(xt-1) -xtI -P*LW*) - k*l = b*fk,) - 
p*x+,] - [p*f(k*) - p*k*] + [p*x,-, --P*x,l < [p*x,-, - P*x,l - E. 
And for t # T,, + 1, we have by our previous calculations, u(c,) - u(c*) < 
[p*x,-, -p*x,]. Hence, for all n, 

a<? [u(c,)-u(c*)]<p*(k*-xT,)-(n-l)& 
t=1 

Q p*k* - (n - 1)~. 

For n large, this is a contradiction. Hence, (k*, f(k*), c*) is an OSP. 1 

Remarks. (i) Note that, by construction, (k*, f(k*), c*) is a stationary 
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program from k*, which has the maximum stationary consumption (hence 
utility) among all stationary programs from arbitrary initial stocks. 

(ii) The program (k*,f(k*),c*) is the only OSP in this model, from a 
positive initial input. For if there were another, say (x, y, c) from x > 0, then 
it would be a positive program, and an Euler program. But (k*, f(k*), c*) is 
the only Euler Stationary Program, so (x, y, c) could not be an OSP. 

4b. Non-Stationary Programs 

We will show that: 

(a) there is an optimal program from every x E (0, &); 
(b) every optimal program converges to the OSP, (k*,f(k*), c*). 

We call a feasible program (x, y, c) from x, good if there exists M > -00, 
such that 

It is bad if 

E [W - 4c*>1 > M for all T> 1. 
I=1 

E [u(c,)-u(c*)]+--o3 as T+~I. 

LEMMA 4.3. There exists a good program from every x E (0, I?). 

Proof. Consider two cases (i) x > k*; (ii) x < k*. In case (i), the 
sequence (x, y, c) given by x0=x, y, = f(x), c, = f(x) - k*, xI = k*, 

Y r+l=f(k*), c,+, = f (k*) -k* for t > 2, is a feasible program, which is 
good. 

In case (ii), define G(x)= f(x) -xx. Then, for O<x< k*, 
@‘(x)=f’(x)-110. So, for x<x<k*, f(x)-x)f(x)-x>O. Pick a 
positive integer N, such that 0 < [k* -xl/N < (i)[f (x) - x]. Now define a 
sequence (a, 9, c^) as follows: x,, = x, x,, L = x, + {[k* - xl/N) for 
t = 0, I,..., N-l;x,=k*fort>N,y,+,=f(x,),andc,+,= y,+,-x,+,for 
t 2 0. Note that for t =O,..., N- 1, c,,, = [f(x,) -xI] + [xI -x,+,1 > 
[f(x) - x] - [x* -xl/N > 0, by choice of N. Also, xN = 
x + N[(k* - x)/N] = k*. Hence, for t > N, c,, , = f (k*) - k* = c*. Thus 
(2, y”, e) is a feasible program from x. Denote X:=1 [u(c,) - u(c*)] by M. 
Then, M > -co, and clearly, 

5 [u(q) - u(c*)] 2 A4 for all T > 1. 
t=1 

Hence (2, 5, e) is good. m 
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Given Lemmas 4.1-4.3, one can follow standard arguments of Gale 
(1967), and Brock (1970), to complete the proof of existence of an optimal 
program. We give the main steps in the argument, without proofs, but with 
the appropriate references. 

LEMMA 4.4. If a feasible program from x > 0 is not good, it is bad. 

ProoJ See Gale (1967). 

LEMMA 4.5. Zf a feasible program (x, y, c) from x is good, then 

(XI, y,,c,)-+(k*Yf(k*),c*) as t-a. 

Proof: See Gale (1967), or Brock (Theorem 2, 1970). 

THEOREM 4.2. There exists an optimal program from every x E (0, I?). 

Proof. See Brock (Lemma 5, and Theorem 2, 1970). 
Since there exists a good program, an optima1 program (whose existence is 

established in Theorem 4.2) is necessarily good. Consequently, by 
Lemma 4.5, every optima1 program (x, y, c) from x E (0, &) has the property 
that (xI, y,, ct)+ (k*, f (k*), c*) as t --) co. Furthermore, if x=x*, then 
(k*, f (k*), c*) itself is an optimal program by Theorem 4.1. If x < k*, then 
an optimal program (x, y, c) has (x,, y,, i, ct+ i) monotonically increasing 
for all t>O, and (xt, y,+,,c,+,) Q (k*, f(k*),c*) for all t>O. [This 
assertion, and the next, follow directly from the argument used in 
Theorem 5.5 of the next section, so we omit the proof here]. Similarly, if 
x > k*, then an optima1 program (x, y, c) has (xI, yt+ i, ct+ i) monotonically 
decreasing for all t > 0, and (xI, y,, i, cI+ J > (k*, f (k*), c*) for all t > 0. 

We now briefly discuss the differences between the “classical” and “non- 
classical” models, in the analysis of the problem of undiscounted optimality. 
It is fairly easy to check (actually, we provide a forma1 argument in the 
proof of Theorem 5.4 in the next section) that for x > k,, every optima1 
program is unique. But for x < k,, it is not known whether the result is true; 
we believe it is not, and a concrete example would be helpful. Certainly, the 
standard argument, used in the “classical” model does not go through. 

Optima1 programs from x > k, can be shown to be competitive; but those 
from x < k, are, in general, not. Consider, for example, x > 0, such that 
x < f - ‘(k,). Consider an optima1 program (x, y, c) from x. If it is 
competitive there is a sequence (p;“) of non-negative prices such that (2.5) 
(2.6) hold. Now, by (2.6), p,? > 0 for t > 1, and by (2.5), pt > 0 also. Also, 
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by (2.5), since u’(O) = 00, c, > 0 for t > 1, so (xt, y,, i) >> 0 for t > 0. Using 
(2.5), then p;k+,f’(x,) = p:, so that we have 

P,*,,f@J- P,*,,f’W-%> P;“+,fW- P,*,,f’(xt)x 

or 

for x>O 

f(q) - f’(x,)x, > f(x) - f’ (x,)x for x > 0. 

Using x = 0 in the above inequality, [f(x,)/x,] > f’(xI). Since x < f-‘(k,), 
so xi < f(x) < k, , and [f(x,)/x,] < f’(x,), a contradiction. 

A difference related to the above is the following: in the “classical” model, 
an Euler program (x, y, c), satisfying x1 -+ k* as t -+ co, is optimal. [This can 
be established by showing that the Euler program is competitive, and then 
completing the argument by using the results of Peleg (1972).] In the “non- 
classical” case the argument fails (for the same reasons as mentioned above) 
for x < k,, since Euler programs need not be competitive. Whether the result 
still holds is an open question. 

It can be shown in the “classical” model, that if (x*, y*, c*) is an optimal 
program then it is an Euler program, and xt + k* as t + co. This result 
continues to hold in the “non-classical” framework. However, it can also be 
shown in the “classical” model, that if (x, y, c) is an optimal program, then 
it is a competitive program, and x, -+ k* as t + co. This result fails to hold in 
the “non-classical” case (see, again, the example given above). The difference 
is that an optimal program can be shown to be an Euler program in either 
case, since, loosely speaking, this involves a “local maximization 
argument.” But showing an optimal program to be competitive involves 
showing that a “global maximization” occurs at the program [in terms of 
“intertemporal profits” and “utility minus expenditure”], and in the presence 
of a non-convexity in the production set, this will not, in general, hold. 

The differences noted here, of course, continue to obtain in the 
“discounted case” of the next section, so, we will not repeat these obser- 
vations there. 

5. OPTIMAL GROWTH WHEN FUTURE UTILITIES ARE DISCOUNTED 

The contrast between the ‘classical” model, and the “non-classical” model 
is more pronounced when one considers the “discounted case.” 

We note, right at the outset, that when the discount factor, 6, satisfies 
0 < 6 < 1, then the existence of an optimal program follows from a direct 
compactness argument as indicated in Majumdar (1975, Theorem 1). In fact, 
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given any x E (0, L)), it can be shown that there is an optimal program 
(x*, y*, c*) from x, such that 

co > 5 r’u(c:)> f 6’-‘u(c,) 
I=1 f=l 

for every feasible program (x, y, c) from x. 
To facilitate discussion of the types of behavior that optimal programs can 

demonstrate we use some convenient definitions, and the following 
classification of the magnitudes of the discount factor. 

Case 1. f’(k,) < (l/S). 

Case 2. f’(k,) = (l/S). 

Case 3. f’(k,) > (l/6) > f’(k2). 

Case 4. f’(k,) > (l/S) > f’(O). 

Case 5. f’(0) > (l/S). 

A feasible program (x, y, c) from x E (0, I?) is dissipative if x, -+ 0 as 
t-+ co. [In this case, it follows, of course, that (cl, y,)+ (0,O) as t + co]. It 
converges to an ESP, if xt --t 2 as t -+ co, and (x’, y’, c’) given by XI = 2, for 
t > 0, is an Euler stationary program. It is oscillatory around 2 if there is a 
subsequence of periods for which x1 > 2, and a subsequence of periods for 
which x, < 2 

We discuss cases 1 and 5 first, since the results here are clear-cut. In case 
1, (where the future is discounted “heavily”) there is no ESP, and so no 
OSP; every optimal program is dissipative. In case 5, (where the future is 
discounted “mildly”), there is a unique ESP, and this is also the unique OSP. 
Every optimal program converges to this ESP. It is easy to check [following 
our methods in cases 1 and 51 that in a “classical” model [with f’(0) < co], 
if f’(0) < (l/6), then there is no ESP, and every optimal program is 
dissipative. And, if f’(0) > (l/6), then there is a unique ESP (which is also 
the unique OSP) and every optimal program converges to this ESP. [In the 
literature on the “classical” model, one generally observes only the latter 
case, since, almost invariably, it is also assumed that f’(0) = co J. 

The intermediate cases bring out the basic differences between the 
classical and the non-classical models. In particular in the non-classical case 
the behavior (even in the long-run) of optimal programs is quite sensitive to 
(a) the magnitude of the discount factor, and, perhaps more important to (b) 
the initial stock from which optimal programs start (given a discount factor). 
Recall, from our above discussion, that in the classical case, given a discount 
factor, the long-run behavior of optimal programs is invariant to the initial 
stock of the economy. 
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In case 2, there is a unique ESP at k,, but there is no stationary program 
which is competitive. The unique ESP need not be an OSP, and this is 
confirmed by a concrete example. Optimal programs from x E (0, k,) are 
dissipative; those from x E [k,, c) are either dissipative or converge to the 
ESP. We also provide an example in which optimal programs from all 
x E (0, I;> are dissipative. 

In case 3, there are two ESPs, the “higher” denoted by K*, the “lower” by 
k, [Here K* (resp. k,) represents the stationary input level on the higher 
(resp. lower) ESP]. There is, however, no stationary program which is 
competitive. That neither ESP need be an OSP is confirmed by an example. 
Optimal programs from x E (0, k, are either dissipative, or oscillatory 
around k,, or converge to the higher ESP, K*. 

In case 4, there are again two ESPs, the higher denoted by K*, the lower 

by k,- The higher ESP is the (unique) stationary program which is 
competitive; it is also the unique OSP. The lower ESP need not be an OSP. 
Optimal programs from x E [k,, I;> converge to the higher ESP. Those from 
x E (0, k2) may exhibit one of the three types of behavior described in case 3. 
We provide an example, in this case, to show that asymptotic behavior of 
optimal programs from different initial stocks can be different. We establish, 
in this example, that an optimal program from a ‘sufficiently low” input 
level, x, must remain bounded away from K* in input levels x1; while, an 
optimal program from K*, has x, = K* for all t > 0. 

We start our analysis with an elementary result, which is useful for all 
subsequent discussions. 

LEMMA 5.1. (i) If (x*, y*, c*) is an optimal program from x E (0, k), 
then it is an Euler program, (ii) If (x, y, c) is a competitive program from 
x > 0, then it is an Euler program, and [f(x,)/x,] > f ‘(x,) for t > 0. 

Proof. To prove (i), note that by (A.9), CT > 0 for t > 1, so 
(x,*, y,“,,i) > 0 for t > 0. For each t > 1, the expression 
u [ f (x;“- i) - x] + 6u [ f (x) - x,*, , ] is maximized at x = x:, among all x 2 0, 
satisfying f (xl*_ i) > x, and f(x) > x,*, , . Since the maximum is at the interior 
point, so u’(cl*) = Su’(c:+,) f ‘(x,*) for t > 1. 

To prove (ii), note that by (2.6), pt > 0 for t > 1, and by (2.5), p0 > 0. 
Hence, by (2.6) c, > 0 for t > 1, and (xt, y,,,) >> 0 for t > 0. Then, using 
(2.5), p,+, f ‘(x,) = pt for t > 0; while, by (2.6), Bf-iu’(c,) = pt for t > 1. 
Hence, for t > 1, u’(c,) = &‘(c,+ i) f ‘(XI). So (x, y, c) is an Euler program. 

Also, using CW PI+ lf (x,) - pt+ 1 f ‘(xl) x, > PI+, f (4 - PI+, f ‘(xAx for 
; f i f using x = 0 in the above inequality, [f (x,)/x,] > f ‘(x1) for 

/ . 
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5a. Stationary Programs 

We will examine the questions of existence and uniqueness of Euler 
stationary programs, optimal stationary programs, and stationary programs 
which are competitive, in each of the five cases. 

Case 1. Lf’W < G/41. 
Here, for all x > 0, f’(x) < f’(k,) < (l/6). Consequently, for any Euler 

program (x, y, c), u’(cJ = df’(x,) u’(c,+ J < u’(cI+ ,); that is, c, > c,, t. So, 
there is no Euler stationary program, and by Lemma 5.1, no OSP, and no 
stationary program which is competitive. 

Case 2. V’(W = WQI. 
Here, for x > 0, x # k,, we have f’(x) < (l/S). The sequence (x, y, c), 

given by xf = k,, Y,,, = f(k,), c,+, = f(k,) - k, for t > 0, is a feasible 
program which is stationary. Clearly, it is an Euler program, so an ESP 
exists. It is easy to check also that this is the unique ESP. Since f’(k,) > 
[f(k,)/k,], so by Lemma 5.1, there is no stationary program which is 
competitive. Clearly, the program (x, y, c) is the only candidate for an OSP. 
It is not known whether (x, y, c) can be an OSP. However, one can 
construct an example where (x, y, c) is not an OSP. To see this, 
note that 1 < f(Wk, < f’(k,h so V(k) - k, IAl - 4 = 
f(k,)[l - (k,/f(k,))]/[l - (l/f’@,))] < f(k,). Choose 0 < a < 1, with a 
sufficiently close to 1, so that { [f(k,) - k,]“/(l -S)} < f(k,)“. Now, 
choose u(c) = ca. Then, for the stationary program (x, y, c) from k,, 
CE, 6’-‘u(c,) = [f(k,) - k,]“/(l - 8). And, for the program (x’, y’, c’) 
from k,, given by x6 = k,, yi = f(k,) = cl, (xi, y\+ ,, c;+ 1) = (O,O, 0) for 
t > 1, we have Czr F’u(c;) = f(k,)“. Since [f(k,) - k,]*/(l - S) < 
f(k,)“, so (x, y, c) is not an OSP. 

Case 3. V’(k) > (1 - 4 > f’(Ml- 
In this case, there are two positive solutions to the equation: 6f’(x) = 1. 

We call these solutions k, and K*, with k, < k, < K* < k,. Clearly then, 
there are exactly two ESPs given by (x, y, c) and (x’, y’, c’) as follows: 
xt=k*y,+,=f(W, cl+]= f(k,) - k, for t > 0; xi = K*, y;+ 1 = f(K*), 
C I+, = f(K*) - K*. Since f’(k,) > [f(k,)/k,], and f’(K*) > df(K*)/K*), 
so by Lemma 5.1, there is no stationary program which is competitive. 

As in case 2, it is not known under what additional conditions, (x, y, c) or 
(x’, y’, c’) could be OSPs. However, one can again construct examples 
where neither of these is an OSP. Since 1 <f(K*)/K* < f’(K*), and 
1 < fW,Jk, < f’&), so [f(K*) - K*]/(l -8) = f(K*)[ 1 - 

W*/f(K*M1- Wf’W*))l < fW*>, and LWd - k+M - 4 = .Wd 
[ 1 - (k,/f(k,))]/[ 1 - (l/f’(k,))] < f(k,). Choose 0 < a < 1, with a 
sufficiently close to 1, so that [f(K*) = K*]*/(l - 6) < f(K*)“, and 
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[f(k,) - k,]“/(l - S) < f(k,)“. Choose u(c) = c~. Now, Czl 6’-‘u(c,) = 
[f(K*) - K*]“/( 1 - 6). Also, the program (a, 3, c^) given by & = K*, 
Y^,=f(K*)=c^,, ($, Et+lr&+l ) = (O,O, 0) for t 2 1, is feasible from K*, 
and Cz i 6’-‘a(?,) =f(K*)“. Since [f(K*) - K*]“/(l - 6) <f(K*), SO 

(x, y, c) is not an OSP. For exactly similar reasons (x’, y’, c’) is not an 
OSP. 

Case 4. [f’(k*) > (l/4 >S’P>l. 
Here, as in case 3, there are two positive solutions to the equation: 

df’(x) = 1. Call them K* and k*, with K* > k*. Clearly 
0 < k, < k, ( k, <K*. There are, consequently, exactly two Euler 
stationary programs, (x, y, c) and (x’, y’, c’) given by: x, = K*, y,, , = 

f(K*). c,, 1 =f(K*)-K* for t>O; x;=k*,y{+, = f(k,),c;+, = 
f(k,) - k, for t > 0. Now, f’(k,) > f(k,)/k,, so by Lemma 5.1, 
(x’, y’, c’) is not a stationary competitive program. However, (x, y, c) is 
competitive. To see this, define pt = 6’-‘u’(c,) for t > 1, and p,, = p, f’(K*). 
Then, by concavity of U, we have 6’-‘u(c) - Btp’z4(ct) < 6’-‘u’(c,)(c - c,) = 
p,(c - ct), which yields (2.6). Define 0(x) = [f(k,)/k,]x for 0 < x < k,, and 
0(x) = f(x) for x > k,. Then 0(O) = 0; 0 is an increasing, concave differen- 
tiable function for x > 0. Also 0(x) >, f(x) for x 2 0. Hence, for x > 0, we 

have pt+ 1 Lf(x) - fW1 < ptt l [~zl(x) - ~zl(x,)l < PI+ I @(x,>[x - xtl = 
pI+ ,f’(xt)[x - xt], since a’(~,) = 0’(K*) = f’(K*) = f’(xt) for t > 0. 
Hence, p,+,S(x) - ptt ~f’(x,)x G pt+ If(x,) - pt+ lf’(-dx,. Using the fact 
that Pi+ J’(-d = S’u’(c,, r)f’(X,) = s’-‘u’(C,+I)[Gf’(x,)] = 
S’-‘u’(cJ[Sf’(K*)] = ~‘-‘u’(c~)= pr for t > 1, and pIf’(x,)= 

pI f’(K*) = p. 1 we have pt+, f(x) - P,X < pt+, .0x,) - PA for t 2 0, 
which is (2.5). 

Note that (x, y, c) is competitive at the above defined price sequence (p,); 
also, prxt = 8’-‘u’(c,)x, = F’u’[f(K*) -K*] K*, so that lim,,, p,x, = 0. 
Hence, by a completely standard argument, (x, y, c) is an optimal program 
from K*. So (x, y, c) is an OSP. The only other candidate for an OSP is 
(x’, y’, c’) [by Lemma 5.11. As in case 3, one can construct a utility 
function, for which (x’, y’, c’) is not an OSP; but, general conditions under 
which (x’, JJ’, c’) can be an OSP are not known. 

Case 5. [(l/4 G f’W1. 
In this case there is a unique positive solution to the equation: 6f’(x) = 1. 

Call this K*. Then, we have k* > K* > k,. Consequently, there is a unique 
Euler stationary program (x, y, c) given by: x, = K*, y,, , = f(K*), cl+, = 
f(K*) - K* for t > 0. [Note that even if Sf’(0) = 1, the “zero program” 
does not qualify as an ESP, since by definition, an ESP must be a positive 
program]. Following the analysis of case 4, it can be shown that (x, y, C) is 
a stationary competitive program [it is the only one, by Lemma 5.11, and 
also an OSP [again, it is the only one, by Lemma 5.11. 
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5b. Non-stationary Programs 

We will examine some qualitative properties of optimal programs from 
x E (0, k, [that is, whether some monotone movements in inputs, outputs, 
and consumption levels can be observed], and also attempt to determine the 
long-run (asymptotic or “turnpike”) behavior of such programs. 

To simplify our discussion of the five cases, we first prove some results 
which are useful in the analysis of all the cases. 

LEMMA 5.2. If (x, y, c) from x E (0,k) is an Euler program and (i) 
Sf ‘(x,) ,< 1 for some t > 1, then (ii) c, > c,, , for this t. If there is strict 
inequality in (i), then there is strict inequality in (ii). If (i) holds for some 
t > 1, and (iii) x, > xIel for this t, then (iv) x,,, > x, for this t. Zf there is 
strict inequality in (i) or (iii), then there is strict inequality in (iv). 

Proof Since (x, y, c) is an Euler program, so u’(c,) = Sf ‘(xt)u’(c,+ ,). 
BY (0, u’(cJ~~‘(c~+~)~ so c,>c,+~. The statement about the strict 
inequalities is obvious. 

If (i) and (iii) hold, then by the above argument, c, > c,, , , so that 

<‘%;I--“: > f (x,) - x, + I * Using (iii), we have f (x,) - x, > f (x,- I) - x, 
, so that x I+, > xI. Again, the statement about the strict 
inequalities ;s+&sy to check. 1 

LEMMA 5.3. rf (x, y.c) f rom x E (0, I;> is an Euler program, and (i) 
Sf ‘(xt) > 1 for some t > 1, then (ii) c,+ 1 > c, for this t. If there is strict 
inequality in (i), then there is strict inequality in (ii). If (i) holds for some 
t > 1, and (iii) x,-, > x, for this t, then (iv) x, > xl+, for this t. If there is 
strictly inequality in (i) or (iii), then there is strict inequality in (iv). 

Proof. Follow the method used to prove Lemma 5.2. 1 

LEMMA 5.4. rf(x, y,c)f rom x E (0, I?) is an Euler program, and x, + .? 
as t -+ co, where 0 < 2 < I?, then Sf ‘(a) = 1. 

Proof Since XI-+.? as t-+co, so c,+f(i?)--a=e. SinceO<Z<<, SO 

c  ̂> 0. Since (x, y, c) is an Euler program, so u’(cJ = Sf ‘(xI)u’(cI+ ,) for 
t > 1, and consequently u’(6) = Sf ‘(2) u’(e). Hence 6f ‘(2) = 1. 1 

LEMMA 5.5. If (x, y, c) is an optimal program from x E (0, k), and 
T>O then (1) cI+*>cI+, for all t>T, implies xt+,>xt for t>T, (2) 
C r+z<c,,,forall t>T, impliesx,,,<x,forall t>T. 

Proof To prove (l), note that xlfl < k* for t > T. Otherwise, if 
x,+, > k* for some t > T, then u’(c,+2)6f ‘(x,+,) < u’(c~+*) Q u’(c,+,), 
which contradicts Lemma 5.1. Suppose now that for some S > T, xs + , < xs. 
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Then xs+2=f(xS+1)-cS+2cf(xS)-cS+2 < f(xJ-c,+, = xs+,. Then 
cs+2 = .ms+,)-%+2 = f(x,+l)-XS+l+(XS+,-XS+2) = f(xs+l)- 

xStl + 4. Then G+~ = ~CG+~)-C~+~ = L~(-G+~)-x~+~I + Ixsi2- 
cs+J < V(xstI)-~S+Il + [xst2-~st31 {since xst2 < ++dk*I G 
f(-%+l)-xs+l +“st2--cs+2 = Lf(xs+l)-%+,l + xstz- m%+,>- 

%+11-4 = xstz- 8,. Repeating this step, xI+ i < x, - 8, for t > S + 1. 
Then x, < 0 for large t, a contradiction. 

To prove (2), suppose on the contrary that xs+ i > xs for some S > T. 

Then cS+l=f(xS)-xS+l=f(xS)-xS+xS-xS+l = V(x,)-x,1-~,. 
so c ltl < cstl = [f(xs) - xs] - 6,) (where 8, > 0) for t > 5’. Construct a 
sequence (x’, y’, c’) from x, with x,! =x, for t = 0 ,..., S, x: =x, for t > S. 
Then (x’, y’, c’) is feasible program from x, with c;, i = cl+i for 
t = o,..., s-1; c;+,= f(x,) - xs > ct+, + 8, for t > S. Hence, (x, y, c) is 
inefficient, a contradiction, which proves (2). 

We now begin our analysis of non-stationary optimal programs in the five 
cases. 

Case 1. V’(k) < WQI. 
The behavior of any optimal program (x, y, c) from x E (0, k, is 

summarized in the following result. 

THEOREM 5.1. If (x, y, c) is an optimal program from x E (0, I;>, then 
(i) c, is monotonically decreasing with lim I+m c, = 0; (ii) x, is monotonically 
decreasing with lim t+a, x, = 0; (iii) y, is monotonically decreasing with 
lim I+cc Y, - - 0. 

Proof: Here 6f’(x) < 6f’(k,) < I for x > 0. Since (x, y, c) is optimal, so 
it is an Euler program by Lemma 5.1. By Lemma 5.2, c, is monotonically 
decreasing. We claim that xI is monotonically decreasing. If not, then 
xs>xs-1 for some S. By Lemma 5.2, x, is non-decreasing for t > S - 1. 
Since x, is bounded above by k; it converges to some x̂ . Since x, > xs _, > 0, 
for t > S - 1, so 2 > 0. Also, 2 < k; otherwise (x, y, c) is inefficient, by 
Theorem 3.2. Hence, by Lemma 5.4., df’(a) = 1, a contradiction, which 
establishes our claim. Since y! = c, + xI, so yI is monotonically decreasing. 

We claim lim,,, x, = 0. Otherwise lim,,, x, =x’ > 0. Since x, is 
decreasing, so x’ < k. Hence 6f’(x2 = 1, a contradiction. Hence, 
lim I+a, x, = 0. Since y, = f(x,-,), so lim,,, y, = 0. Since c, < y,, so 
lim f+rn c, = 0. I 

Case 2. If’(k) = (l/41. 
The monotonicity properties of optimal programs is noted in the following 

result. 

PROPOSITION 5.1. An optimal program (x, y, c) from x E (0, I?) has the 
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following properties; (i) c, is monotonically non-increasing; (ii) xI is 
monotonically non-increasing; (iii) y, is monotonically non-increasing. 

Proof: Here 6f’(x) < 1 for x # k,. Since (x, y, c) is optimal, it is an 
Euler program by Lemma 5.1. By Lemma 5.2, (i) follows immediately. Then 
(ii) follows by Lemma 5.5. Now, (iii) follows from (i) and (ii). 1 

The asymptotic properties of optimal programs is given by the following 
theorem. 

THEOREM 5.2. Zf (x, y, c) is an optimal program from x E (0, k), then 
0) (q, Y,, c,)+ (O,O, 0) as t+ 03, if x E (0, k,); (ii) (x,, yl, cI) either 
converges to (0, 0,O) or to (k, , f(k,), f(k,) - k,) as t + 00, if x E [k, , I;>. 

Proof. If x E (0, k,), then by Proposition 5.1, x, converges to some 
x” ( k, . If 2 > 0, then by Lemma 5.4, 6f’(x’) = 1, a contradiction. So 2 = 0. 
Since y, = f(x,- ,>, so y, +Oast+co.SinceO<c,<y,,soc,-+Oast+a3. 

If x E [k,, k), then by Proposition 5.1, xI converges to x’ < k. Either (a) 
x’=O, or (b) x”> 0. If (a) holds, then xI+O as t-+ co; y,=f(x,-,)+O as 
t -+ co; also 0 < c, < y,, so c, -+ 0 as t + co. If (b) holds, then by Lemma 5.4, 
Sf’(,?) = 1, so x = k,. Hence, x1+ k,, yt-+ f(k,) and c, + f(k,) -k, as 
t-03. I 

The characterization of the long-run behavior of an optimal program when 
x E [k,, k), is somewhat less sharp than is desirable. More precisely, it 
would be useful to have conditions on u and f, under which one could 
definitely say that (xI, y,, c,) + (0, 0,O) for x E [k,, I;>. It is simple to 
construct an example in which this is indeed the case. 

As in Section 5a, note that [f(k,) - k,]/(l - S) < f(k,). Choose 
0 < a < 1, such that [f(k,) - k,]“/(l - 6) < f(k,)*. Now choose u(c) = cu. 
Then, by Proposition 5.1, an optimal program (x, y, c) from k, must either 
satisfy (a) x, = k,, y,, I = f(k,), cI+, = f(k,) -k, for t > 0, or it must 
satisfy (b) (q, Y,, c,> --f (0, 0, 0) as t + co. By the analysis in Section 5a, (a) 
cannot happen; so (b) must occur. 

We claim that if (x, y, c) is optimal from x E (k, , k), then (x,, y,, c,) + 
(0, 0, 0) as t + ao. Otherwise, by Proposition 5.1, (xI, yt, ct) + (k,, f(k,), 
f(k,) - k,) as t + 00. Choose ,8 > 0, such that [f(k,) - k, + /?I”/( 1 - S) < 
f(k,)“. Clearly, there is T, such that c, < [f(k,) - k, + /3] for t > T; also 
xt > k, for all t > 0. Construct a sequence (x’, y’, c’) as follows: xi = xI for 
t = 0, l,..., T-l; xi=0 for t>T. Then c;=c, for t=l,...,T-1; 
c; = f(x,- ,) > f(k,), c; = 0 for t > T. Now 
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This contradicts the optimality of (x, y, c) from x E (k,, c), and establishes 
our claim. 

It would also be useful to have conditions on u and J; under which one 
could definitely say that (x,, yl, c,) + (k,, f(k,), f(k,) - k,) as t + co, for 
x E [k,, E). We have not found a concrete example of such a case. 

Case 3. [f’(k) > Cl/@ > f’(kz>l. 
As in Section 5a, denotes by k,, K* the two positive solutions of the 

equation Sf ‘(x) = 1, with k* ( K”. Then k.+ < k, < K* < k,. 
One qualitative property of optimal programs from x E (0, F) is given in 

the following result. 

PROPOSITION 5.2. If (x, y, c) is an optimal program from x E (0, E), 
then xI < max(K*, x), for t > 0. 

Proof: We estabiish this result, by separating two cases (i) x E (0, K*], 
and (ii) x E (K*, k). 

In case (i), suppose on the contrary that x, > K* for some t. Let S be the 
first period for which xs > K*. Then xsP1 <K*. Also, Sf ‘(x,) < 
Sf ‘(K*) = 1. So by Lemma 5.2, xs+ i > xs. Then this step can be repeated to 
show that xt+ , > x, for t > S - 1. Since x, < f for all t, so x, converges to 
some 2. Clearly 2 > K* > 0. If 2 = k; then (x, y, c) is inefficient, a 
contradiction. Hence ,? < k. Then by Lemma 5.4, Sf ‘(2) = 1. But, clearly, 
Sf ‘(a) < df ‘(K*) = 1, a contradiction. Thus, x, <K* for all t > 0. 

In case (ii), suppose on the contrary that xI > x for some t. Let S be the 
first period for which xs > x. Then xs- i < x. Also, Sf ‘(x,) < df ‘(x) < 
Sf ‘(K*) = 1. So by Lemma 5.2, xs+ 1 > xs. Then this step can be repeated to 
show that xt+, > x, for t > S - 1. Now, follow exactly the argument used in 
case (i) to get a contradiction. Thus x, < x for all t > 0. 

In either case, then, x, < max(K*, x) for t > 0. 

h42i27/1-9 
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THEOREM 5.3. If (x, y, c) is an optimal program from x E (0, E), then it 
exhibits one of the following three behavior patterns: 

(1) x(+Oas t--+03; 

(2) x,-K* as t-a; 

(3) x, is oscillatory around k, . 

Proof. If (x, y, c) is optimal from x f (0, E);), then it is an Euler program. 
Denote (0, k*] by A, (k,, K*] by B, (K*, Ir> by C. Consider two cases: (a) 
x E (0, K*]; (b) x E (K*, E). We consider case (a) first. Here, for any t, x1 
belongs to A or B, by Proposition 5.3. There are then three subcases to con- 
sider: 

(i) x, is in A for a finite number of periods; 

(ii) xt is in B for a finite number of priods; 

(iii) xI is in A for a subsequence of periods and x, is in B for a subse- 
quence of periods. 

In (i), there is T such that for t > T, x, is in B. Hence for t > T, 
Sf ‘(x,) > 1. By Lemma 5.3, c,+, > c, for t > T. By Lemma 5.5 xI+ i > x, for 
t > T. By Proposition 5.2, xt <K* for t > 0. Hence x, converges to some 
2 <K* < l. Clearly x^ > k* > 0 so by Lemma 5.4, Sf ‘(2) = 1; that is iZ = K* 
as Mm. 

In (ii), there is T such that for t > T, xI is in A. Hence for t > T, 
Sf ‘(XI) < 1. By Lemma 5.2, c 1+1 <c, for t> T. By Lemma5.5, x,+, <x, for 
t > T. Since x, < a for t > T, so x, converges to some .? < k*. If .-? = 0, then 
x, + 0 as t -+ co. If z? > 0, then df ‘(a) = 1, and 2 = k, . Since x, is in A for 
t > T, and x 1+, < x, for t > T, so x, = k, for t > T. Hence xI is oscillatory 
around a. 

In (iii), by definition, x, is oscillatory around a. 
Next consider case (b); that is x E (K*, l). We consider two subcases (i’) 

xt belongs to C for all t > 0; (ii’) x, does not belong to C for some t. In case 
(i’), Sf ‘(XI) < 1 for all t > 1, so by Lemma 5.2, c, > cl+, for all t, and by 
Lemma 5.5, x 1+ I < x, for all t. Hence xt converges to some ft. Clearly 
K* < 9 < x < k: So by Lemma 5.4, Sf ‘(a) = 1; consequently 2 = K*. Thus, 
x,+K* as t-+ co. 

In (ii’), consider the first period, S, for which xs is not in C. Then there is 
an optimal program (x’, y’, c’) from x = xs, with x; = x~+~ for t > 0. By the 
analysis of case (a), x; + K* as t-co, or x+0 as t+co, or x; is 
oscillatory around k,. Consequently, x, + K* as t + co, or x, + 0 as t + 03, 
or xI is oscillatory around k*. 

Thus in both cases (a), and (b), xt exhibits one of the three types of 
behavior claimed in the Theorem. I 
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If we consider the utility function given in Case 3 of Section 5a, then 
x, = K* for t > 0 is not optimal. Following the argument of Case 2 of 
Section 5b, programs for which x1 converges to K* as t + co are also not 
optimal. Thus, for that example, the behavior pattern (2) in Theorem 5.3 can 
be ruled out. It would be interesting to have examples in which all three 
types of behavior of Theorem 5.3 are actually demonstrated by optimal 
programs. 

Case 4. [f’W 2 (l/4 > f’F-91. 
Dztine, as in Section 5a, 0(x) = f(x) for x > k, ; 0(x) = [f(k2)/kz]x for 

0 < x < k,. Then a(O) = 0, 0 is strictly increasing, concave, differentiable, 
and satisfies the end-point conditions: I’ < 1 < a’(O). Define the 
“expanded convex technology set” 6’ = ((x, y): x > 0, 0 < y < 0(x)}. The 
non-convex technology set K is, of course, given by {(x, y): x > 0, 
0 < y < f(x)}. A feasible program (x, y, c) for K’ from x > 0, is a sequence 
such that 

xg=x,O<xt<Yt1 Y,=ax,-l) for t > 0, 

0 < c, < Y, -x, for t> 1. 

Note that given any feasible program (x, y, c) from x, there is a feasible 
program (x’, y’, c’) for i%-’ from x, such that xi =x,, yi,, > y,, , , 
C I+ I > cI+, for t > 0. Also (x, y, c) itself is a feasible program for g’ from x. 

An optimal program (x*, y”, c*) for g” from x > 0 is a feasible program 
for K’ such that 

lim sup 4 are1 [u(c,) - u(cp)] < 0 
I-tco t=, 

for every feasible program (x, y, c) for g” from x. 
As in Section 5a, let k,, K* be the two positive solutions of df ‘(x) = 1, 

with k, < K*. Then k* < k, ( k, < K*. 
The qualitative properties of optima1 programs from x E (k,, I?) is given in 

the following Theorem. 

THEOREM 5.4. (1) If (x, y, c) is an optimal program from 
x E [k,,K*], then (xt, y,, c,) are monotonically non-decreasing, and 
(x~, Ye, CJ -+ (K*, f (K*), f (K*) -K*) as t-, =J; 

(2) If (x, y, C) is an optimal program from x E (K*, i), then 
(xt, y,, c,) are monotonically non-increasing, and (xt , Y,, c,) + (K*, f (K*), 
f (K*) -K*) as t + 03. 
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Proof: To prove (l), consider an optimal program (x’, y’, c’) for g-‘, 
from x E [k,, K*]; there exists one by Majumdar (1975, Theorem I), and is 
unique since 0 is concave and u strictly concave. It is standard to check 
[follow, for example, the analysis in Mitra (1979, Section 5)j that (xi, y;, c,!) 
are monotonically non-decreasing, and (x:, y;, c,!) + (K*, f(K*). 
f(K*) -K*) as t+ co. Since XI E [k,, K*] for all t, hence (x’, y’, c’) is a 
feasible program from x E [k,, K*]. Hence (x’, y’, c’) is a feasible program 
from x E [k,, K*]. Hence (x’, y’, c’) is a feasible program from 
xE [k2,K*]. 

We claim that if (x, y, c) is an optimal program from x E [k2, K*], then 

(xl~u,+,~c,+,>=(x:~Y:+*~c;+l ) for t>O. Otherwise, if (x,,y,+,,c,+,)# 

(x:3 Y ,!+, , c,, ,) for some t, then since (x, y, c) is a feasible program for F’, 
so c,“=l &+I u(c,) ( C,“=, 6’-‘u(c;), as (x’, y’, c’) is the unique optimal 
program for K’. So (x, y, c) could not be an optimal program from 
x E [k,, K*], a contradiction, which establishes our claim. 

Thus if (x, y, c) is an optimal program from x E [k,, K* 1, then (x, y, c) = 
(x’, y’, c’) and so (xI, yl, c,) are monotonically non-decreasing, and 
(-q, yt, c,> + (K*, f(K*), f(K*) -K*) as t+ CO. 

One can prove (2) by analogous arguments, so we omit the details. 

Remark. Note that in the process of proving Theorem 5.4, we have also 
proved that there is a unique optimal program from every x E [k, , E). 

The behavior of optimal programs from x E (0, k,) can be obtained by 
checking that the analysis in Proposition 5.2 and Theorem 5.3 can be 
applied to this case. 

THEOREM 5.5. If (x, y, c) is an optimal program from x E (0, k,), then 
x, < K* for t > 0. Furthermore, it exibits one of the following three behavior 
patterns: (1) x,-+0 as t+ a~; (2) x(-K* as t+ 00; (3) x, is oscillator-y 
around k*. 

Proof Follow the proofs of Proposition 5.2, and Theorem 5.3. B 

We have seen in Cases 2, 3, and 4 that optimal programs from different 
initial stocks may exhibit quite different types of behavior, even in the 
longrun. In the “classical” model, this possibility cannot occur. Thus, this 
can be considered as an important characteristic of the “non-classical” model. 
However, we have not yet given any concrete example, to demonstrate that 
optimal programs from different initial stocks will, in fact, have different 
long-run behavior. Case 4 is a convenient case to construct such an example. 
We know that (irrespective of the choice of a utility function) if 
f ‘(k,) = (l/S), then the feasible program (x, y, c) from k, with x, = k, for 
t > 0, is an optimal program from k,. We will construct a utility function 
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such that an optimal program (x’, y’, c’} from a “sufficiently low” input 
level x > 0, will remain bounded away from k,. 

EXAMPLE. Assume f’(k2) = (l/6). Define k, = (k,/2). Choose k, > 0, 
such that f[f(kJ 1 = min[f, k3J. Define ,8= ff(k,)[l - {ijf(k,)/k,}]. Note 
that k, < k,, so [;Sf(k4)/k4j < 1. Choose i < a < 1 such that 
[ 1 + (l/S)] [ (1 - a)/( 1 - S)] ( q/2). Define u(c) = cu. 

Consider, now, an optimal program (x’, y’, c’) from x = k,. We claim 
that x: is bounded away from k,. Suppose, on the contrary that there is a 
subsequence of periods for which x; --t k,. By the argument used to establish 
Proposition 5.3, x; < k, for all t. Thus, there is some t, such that k, -2: < 
k, - f[f(,$)]. Let S be the first period this happens. Then x& > f[f(k4)). 
Hence S 2 2. Since S is the first period for which this happens, so 
k, -x;-, > k, - flf(U1. So %I < fIS(WL and similarly 
xi-2 < fbWd1. Al so x&<f(x&-,I, so x;-, >.I--‘[x;.] >f(k,); x;-, < 
f&-d, so xi-2 >S-‘14-J > 4. 

Define a sequence (,Y”, y”, c”) from x as follows: x; =x; for 
t = o,..., S - 2; x;’ = 0 for t 2 S - 1. Clearly, this is a feasible program from 
x. Now Sfm’u(c(l) = 6’-‘u(c;) for t = l,..., S - 2. For t = S - 1, s’-‘u(c:l) = 
6f-‘c;‘a = ~Y-‘f(xf-~)~ = fJ’-‘f(x;-,)“; for t > S - 1, ~‘+‘u(c;) = 0. 

For t > S, we have 

(y-IQ;) = fJ-‘c;a < Pat; + 6’-‘(1 -a) 

= &-‘aj-@_,) - #-‘ax: + #-I(1 - a) 

+ Pax;-, -6’-‘ax; + 6’-l(1 -a) 

= -pt-* + B’-*ax;_] -fY’crX;+8’-‘(1-a). 

Now, y,-, = 8-*ax;_, [ 1 - {@(xi- I)/x;-,}] > 0 for t > S. For t = S, we 
have 

t3-*ax;-, 11 - i@-(xj-,)/~:-I~l 
> iY-2 
, Tf(k4) 1 - 91 > &-‘/3. 

3 

Also, for t = S - 1, 

#-‘u(ci) = cY-‘c;~ < S’-‘aj-(x;-l) - 6’-‘ax~ + 6’-‘(1 -a). 
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SO 

< P’ax \ 
;-1-~s-2~+pI (1 -a> 

(1 - 6)’ 

Hence, 

-F 
(1 -a) 

t=z1 
a-‘z&y < ds-2af(x;-2) - S”-‘p + rP2(1 - cz) + P’ (1 

< fF2af(x;_,) - P-‘/3 + P2(1 - a) 
I1 + (l/41 

(l _ 6) 

< P2af(x;- ,). 

so 

y 6’-‘u(C:) < ‘+’ 6’-‘u(c;) + 6s-2af(x&-2) 

t7 tz, 

s-2 

= x St-‘u(cr) + as-*af(x;-,) 

t=1 

s-2 

< 2 S’-‘u(c;l) + ss-2f(X;-2) 

ICI 

s-2 

< -s S’-‘u(c:l) + ss-2/f(x;-2)]” 
tz 

s-2 

ZZ -K- Pu(c~) + -F S’-‘u(cy) = T  a-‘z&y). 

t5 t=z1 t=, 

Hence (x’, y’, c’) is not optimal from x, a contradiction. This establishes our 
claim that the optimal program (x’, y’, c’) remains bounded away from k, 
in input levels. Clearly, the feasible program (x, y, c} from k,, given by 
xt = k, for all t is an optimal program from k, (by the analysis of Case 4 in 
Section 5a). Hence optimal programs from k, and x exhibit different long- 
run behavior. 

Case 5. V’(O) 2 (l/41* 
As in Section 5a, call K* the unique positive solution of 6f’(x) = 1. Then 
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k, < K* < k*. The qualitative behavior of optimal programs from x E (0, i) 
is given by the following result: 

PROPOSITION 5.4. If (x, y, c) is an optimal program from x E (0, E), then 

(1) x<K* impliesx,<K*,x,+,>x,,andc,+,>c,+,forallt>0. 

(2) x>K*impliesx,>K*,x,+,~x,,andc,+,,<c,+,forallt>0. 

ProoJ We will first prove (1). We claim that x, <K* for t > 0. 
Otherwise, let S be the first period for which xs > K* for t > 0. Then 
xsp, < K*, so xs > xs- r . Also Sf ‘(xJ < 1. So by Lemma 5.2, c,, , < cs, 
xs+1 > xs. Repeating this step x,+, > x, and c,, r < c, for t > S. This 
contradicts Lemma 5.5. Hence x, < K* for t >O. So 6f’(x,) > 1 for t 20, 
and by Lemma 5.3, cl+* > c,, , for t > 0. Finally, by Lemma 5.5, x,, , > x, 
for t > 0. 

Next, we prove (2). We claim that x, > K* for t > 0. Otherwise, let S be 
the first period for which xs < K*. Then xs- r > K*, so xs ( xs-, . Also, 
df ‘(x,) > 1. So by Lemma 5.3, cs+, > cs, xS+, < xs. Repeating this step, 
x,+, <x, and cttl > c, for t > S. This contradicts Lemma 5.5. Hence, 
x,>K* for t>O. So Sf’(x,)< 1 for t>O, and by Lemma5.2, c,+~<c,+, 
for t > 0. Finally, by Lemma 5.5, x,, I < x, for t > 0. 

The following asymptotic behavior of optimal programs is then easy to 
obtain. 

THEOREM 5.5. Zf (x, y, c) is an optimal program from x E (0, k), then 
(x,, Y,, cJ+ (K*, f (K*), f (K*) -K*) as t-+ ~0. 

Proof. If x E (0, K*], then by Proposition 5.4, xt -+ x^ as t-t co, where 
x < 2 <K*. So by Lemma 5.4, Sf ‘(a) = 1; that is, x^ = K*. 

If x E [K*, k), then by Proposition 5.4, xI+ x’ as t + co, where 
K* <x^< X. So by Lemma 5.4, df ‘(2) = 1; that is, x’= K*. 

Thus x~-+ K* as t -+ 03 for all x E (0, l). So ( y,, c,) + (f(K*), 
f(K*)-K*) as t--v co. 

6. DISCOUNTED OPTIMAL GROWTH WITH A LINEAR UTILITY FUNCTION 

We shall sketch the main results that one can obtain if one maintains the 
technological structure of the model (described in Sections 2b and 2c) but 
takes a linear utility function U(C) = c. We recast (2.4) as follows: a feasible 
program (x*, y*, c*) from x is optimal if: 
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for every feasible program (x, y, c) from x. Note right away that an optimal 
program from x > 0 need not be a positive program. Thus, a mechanical 
application of many of the arguments in Section 5 is not admissible. The 
existence question is settled by the direct compactness argument in 
Majumdar [ 1975, Theorem 11. Turning to the question of characterization of 
optimal programs, it is useful to single out two special programs. The 
program (x, y, c) from x > 0 defined as 

c, = y, = f(X), x, = Yt+ * = c,+ 1 = 0 for t>l, (6.2) 

is called the extinction program from x > 0. Of course, the extinction 
program is dissipative. The program (X, J, F) from x > 0 defined as 

xo=x;x,=Y,=f(~,~,),c,=O for r>l. (6.1) 

is called the pure accumulation program from x > 0. As before, the equation 
@‘(x) = 1 is important in the analysis of qualitative behavior of optimal 
programs. It may not have a real non-negative solution. If it has a unique 
non-negative real solution, we denote it by K*. If it has two non-negative 
real solutions, the larger solution is denoted by K*. 

In contrast with the analysis of Section 5, the results with a linear utility 
function are sharper and more complete. One considers three distinct 
possibilities: 

Case 1. a-‘(b) < 1. 
Case 2. df’(0) < 1 < @‘(k,). 

Case 3. Sf’(0) > 1. 

In case 1, the extinction program (defined in (6.2)) is optimal from every 
initial stock x > 0. If, in fact, df’(k,) < 1 the extinction program is also the 
unique optimal program. 

In case 3, if x > K*, the program defined as x$ =x, XT = K* for t > 1 is 
the unique optimal program. On the other hand, for x < K*, let A4 be the 
smallest integer such that Z,+, > K*, i.e., let M be the first period such that 
the pure accumulation program from x (defined in (6.3)) has an input stock 
at least as large as K*. If x < K*, the feasible program given by x: = Zt for 
t = o,..., M - 1, x,* = K* for t > M is the unique optimal program. In other 
words, the optimal program coincides with the pure accumulation program 
in the initial periods till one “attains” K*, and then uses K* as the input in 
all subsequent periods. Thus, we have the usual “turnpike behavior” of 
optimal programs: independent of initial stock x > 0, the stationary input K* 
and the stationary consumption f(K*) -K* is attained in a finite number of 
periods. 

Case 2 is perhaps the central case, since it illustrates a basic difference 
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between the “classical” and the “non-classical” models. In this case, one is 
able to establish a critical “threshold level”, k(0 < k < L) such that if the 
initial stock x is less than k, the extinction program is optimal from x. On 
the other hand, if x is greater than k, there is M’ > 1, such that an optimal 
program (x, y, c) satisfies xI = K* for t > M’. Thus, the behavior of optimal 
programs depends critically on the magnitude of the initial stock. 

Cases 1 and 3 were considered by Clark (1971). His conjecture about the 
existence of k in case 2 is proved in Majumdar and Mitra (1980) which has 
a self-contained discussion of all the three cases. 
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